Abstract
abstract A complete reexamination of Geiger's method in the light of modern numerical analysis indicates that numerical stability can be insured by use of the QR algorithm and the convergence domain considerably enlarged by the introduction of step-length damping. In order to make the maximum use of all data, the method is developed assuming a priori estimates of the statistics of the random errors at each station. Numerical experiments indicate that the bulk of the joint probability density of the location parameters is in the linear region allowing simple estimates of the standard errors of the parameters. The location parameters are found to be distributed as one minus chi squared with m degrees of freedom, where m is the number of parameters, allowing the simple construction of confidence levels. The use of the chi-squared test with n-m degrees of freedom, where n is the number of data, is introduced as a means of qualitatively evaluating the correctness of the earth model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.