Abstract

Life growth and development are driven by continuous cell divisions. Cell division is a stochastic and complex process. In this paper, we study the impact of cell division on the mean and noise of mRNA numbers by using a two-state stochastic model of transcription. Our results show that the steady-state mRNA noise with symmetric cell division is less than that with binomial inheritance with probability 0.5, but the steady-state mean transcript level with symmetric division is always equal to that with binomial inheritance with probability 0.5. Cell division except random additive inheritance always decreases mean transcript level and increases transcription noise. Inversely, random additive inheritance always increases mean transcript level and decreases transcription noise. We also show that the steady-state mean transcript level (the steady-state mRNA noise) with symmetric cell division or binomial inheritance increases (decreases) with the average cell cycle duration. But the steady-state mean transcript level (the steady-state mRNA noise) with random additive inheritance decreases (increases) with the average cell cycle duration. Our results are confirmed by Gillespie stochastic simulation using plausible parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.