Abstract

The reaction of decamethylsilicocene, (Me5C5)2Si, with the proton-transfer reagent Me5C5H2+B(C6F5)4- produces the salt (Me5C5)Si+ B(C6F5)4(2), which can be isolated as a colorless solid that is stable in the absence of air and moisture. The crystal structure reveals the presence of a cationic pi complex with an eta5-pentamethylcyclopentadienyl ligand bound to a bare silicon center. The 29Si nuclear magnetic resonance at very high field (delta = - 400.2 parts per million) is typical of a pi complex of divalent silicon. The (eta5-Me5C5)Si+ cation in 2 can be regarded as the "resting state" of a silyliumylidene-type (eta1-Me5C5)Si+ cation. The availability of 2 opens new synthetic avenues in organosilicon chemistry. For example, 2 reacted with lithium bis(trimethylsilyl)amide to give the disilene E-[(eta1-Me5C5)[N(SiMe3)2]Si]2(3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.