Abstract

Genetic and biochemical studies have shown that Ser(20) phosphorylation in the transactivation domain of p53 mediates p300-catalyzed DNA-dependent p53 acetylation and B-cell tumor suppression. However, the protein kinases that mediate this modification are not well defined. A cell-free Ser(20) phosphorylation site assay was used to identify a broad range of calcium calmodulin kinase superfamily members, including CHK2, CHK1, DAPK-1, DAPK-3, DRAK-1, and AMPK, as Ser(20) kinases. Phosphorylation of a p53 transactivation domain fragment at Ser(20) by these enzymes in vitro can be mediated in trans by a docking site peptide derived from the BOX-V domain of p53, which also harbors the ubiquitin signal for MDM2. Evaluation of these calcium calmodulin kinase superfamily members as candidate Ser(20) kinases in vivo has shown that only CHK1 or DAPK-1 can stimulate p53 transactivation and induce Ser(20) phosphorylation of p53. Using CHK1 as a prototypical in vivo Ser(20) kinase, we demonstrate that (i) CHK1 protein depletion using small interfering RNA can attenuate p53 phosphorylation at Ser(20), (ii) an enhanced green fluorescent protein (EGFP)-BOX-V fusion peptide can attenuate Ser(20) phosphorylation of p53 in vivo, (iii) the EGFP-BOX-V fusion peptide can selectively bind to CHK1 in vivo, and (iv) the Deltap53 spliced variant lacking the BOX-V motif is refractory to Ser(20) phosphorylation by CHK1. These data indicate that the BOX-V motif of p53 has evolved the capacity to bind to enzymes that mediate either p53 phosphorylation or ubiquitination, thus controlling the specific activity of p53 as a transcription factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.