Abstract

A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The $\mathbb{Z}_2$-genus of a graph $G$ is the minimum $g$ such that $G$ has an independently even drawing on the orientable surface of genus $g$. An unpublished result by Robertson and Seymour implies that for every $t$, every graph of sufficiently large genus contains as a minor a projective $t\times t$ grid or one of the following so-called $t$-Kuratowski graphs: $K_{3,t}$, or $t$ copies of $K_5$ or $K_{3,3}$ sharing at most two common vertices. We show that the $\mathbb{Z}_2$-genus of graphs in these families is unbounded in $t$; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its $\mathbb{Z}_2$-genus, solving a problem posed by Schaefer and \v{S}tefankovi\v{c}, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces. We also obtain an analogous result for Euler genus and Euler $\mathbb{Z}_2$-genus of graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.