Abstract

We describe a statistical measure, Mass Distance Fingerprint, for automatic de novo detection of predominant peptide mass distances, i.e., putative protein modifications. The method’s focus is to globally detect mass differences, not to assign peptide sequences or modifications to individual spectra. The Mass Distance Fingerprint is calculated from high accuracy measured peptide masses. For the data sets used in this study, known mass differences are detected at electron mass accuracy or better. The proposed method is novel because it works independently of protein sequence databases and without any prior knowledge about modifications. Both modified and unmodified peptides have to be present in the sample to be detected. The method can be used for automated detection of chemical/post-translational modifications, quality control of experiments and labeling approaches, and to control the modification settings of protein identification tools. The algorithm is implemented as a web application and is distributed as open source software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.