Abstract

A wide variety of topics in pure and applied mathematics involve the problem of counting the number of lattice points inside a convex bounded polyhedron, for short called a polytope. Applications range from the very pure (number theory, toric Hilbert functions, Kostant’s partition function in representation theory) to the most applied (cryptography, integer programming, contingency tables). This paper is a survey of this problem and its applications. We review the basic structure theorems about this type of counting problem. Perhaps the most famous special case is the theory of Ehrhart polynomials, introduced in the 1960s by Eugene Ehrhart. These polynomials count the number of lattice points in the different integral dilations of an integral convex polytope. We discuss recent algorithmic solutions to this problem and conclude with a look at what happens when trying to count lattice points in more complicated regions of space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.