Abstract

There is a male bias in the size of the cerebellum, with males, on average, having more Purkinje cells than females. The critical periods in cerebellum development occur when the immature testes secrete Müllerian inhibiting substance (MIS; synonym anti-Müllerian hormone) but only trace levels of testosterone. This suggests that the male bias in the cerebellum is generated by a different mechanism to the testosterone-sensitive reproductive nuclei. Consistent with this, in the present study, we report that Purkinje cells and other cerebella neurones express receptors for MIS, and that MIS(-/-) male mice have female-like numbers of Purkinje cells and a female-like size to other parts of their cerebellum. The size of the cell bodies of Purkinje cells was also dimorphic, although only a minority of this was a result of MIS. This suggests that MIS induces the initial male bias in the cerebellum, which is then refined by pubescent testosterone and/or other sex-specific factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.