Abstract
The modeling of plasma torch operation has advanced greatly in the last 15 years due to a better understanding of the underlying physics, development of commercial, open-source computational fluid dynamics softwares, and access to high performance and cloud computing. However, the operation mode of the electric arc in plasma torches is controlled by dynamic, thermal, electromagnetic, acoustic and chemical phenomena that take place at different scales and whose interactions are not completely understood yet. Even though no single model of plasma torch operation fully addresses these phenomena, most of these models are useful tools for parametric studies, if their use is reinforced by knowledge of torch operation and the model predictions are validated against experimental data. To increase the level of predictability of the current models, several further steps are needed. This study examines the issues remaining to be addressed in the modeling of plasma spray torch operation and the current critical aspects of these.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.