Abstract

The spin waves in a powdered sample of a quasi-two-dimensional antiferromagnet, FePS3, have been measured using neutron inelastic scattering. The data could be modelled and the exchange interactions determined using a two-dimensional Heisenberg Hamiltonian with single ion anisotropy. A suitable fit to the data could only be achieved by including magnetic interactions up to the third nearest neighbour, which is consistent with the findings for other members of the MPS3 family (M=transition metal). The best fit parameters at 6 K were J1 = 1.49 meV, J2 = 0.04 meV, J3 =− 0.6 meV, with an anisotropy of Δ = 3.7 meV. Measurements as a function of temperature give a coarse measure of the behaviour of the anisotropy and the nature of the phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.