Abstract

In this study, we investigate the convective flow of a micropolar hybrid nanofluid through a vertical radiating permeable plate in a saturated porous medium. The impact of the presence or absence of the internal heat generation (IHG) in the medium is examined as well as the impacts of the magnetic field and thermal radiation. We apply similarity transformations to the non-dimensionalized equations and render them as a system of non-linear ODEs (Ordinary Differential Equations) subject to appropriate boundary conditions. This system of non-linear ODEs is solved by an adaptive mesh transformation Chebyshev differential quadrature method. The influence of the governing parameters on the temperature, microrotation and velocity is examined. The skin friction coefficient and the Nusselt number are tabulated. We determine that the skin friction coefficient and heat transport rate increase with the increment in the magnetic field. Moreover, the increment in the micropolarity and nanoparticle volume fraction enhances the skin friction coefficient and the Nusselt number. We also conclude that the IHG term improved the flow of the hybrid nanofluid. Finally, our results indicate that employing a hybrid nanofluid increases the heat transfer compared with that in pure water and a nanofluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.