Abstract
On 27 October, 2003, two GOES M-class flares occurred in an interval of 3 h in active region NOAA 10486. The two flares were confined and their associated brightenings appeared at the same location, displaying a very similar shape both at the chromospheric and coronal levels. We focus on the analysis of magnetic field (SOHO/MDI), chromospheric (HASTA, Kanzelhöhe Solar Observatory, TRACE) and coronal (TRACE) observations. By combining our data analysis with a model of the coronal magnetic field, we compute the magnetic field topology associated with the two M flares. We find that both events can be explained in terms of a localized magnetic reconnection process occurring at a coronal magnetic null point. This null point is also present at the same location one day later, on 28 October, 2003. Magnetic energy release at this null point was proposed as the origin of a localized event that occurred independently with a large X17 flare on 28 October, 2003 [Mandrini, C.H., Démoulin, P., Schmieder, B., Deluca, E., Pariat, E., Uddin, W. Companion event and precursor of the X17 flare on 28 October, 2003. Solar Physics, 238, 293–312, 2006], at 11:01 UT. The three events, those on 27 October and the one on 28 October, are homologous. Our results show that coronal null points can be stable topological structures where energy release via magnetic reconnection can happen, as proposed by classical magnetic reconnection models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.