Abstract

Solar Physics The solar corona is the outermost layer of the Sun's atmosphere, consisting of hot, diffuse, and highly ionized plasma. The magnetic field in this region is expected to drive many of its physical properties but has been difficult to measure with observations. Yang et al. used near-infrared imaging spectroscopy to determine the electron density and magnetohydrodynamic wave speed in the corona. By combining these measurements, they derived maps of the magnetic field throughout the entire observable corona. The method could potentially be used to produce routine magnetic field maps for the corona that are similar to those already available for the Sun's surface. Science , this issue p. [694][1] [1]: /lookup/doi/10.1126/science.abb4462

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.