Abstract

Our aim is to present a solution to a general linear-quadratic (LQ) problem as well as to a Kalman-Yacubovich-Popov (KYP) problem for infinite-dimensional systems with bounded operators. The results are then applied, via the reciprocal system approach, to the question of solvability of some Lur'e resolving equations arising in the stability theory of infinite-dimensional systems in factor form with unbounded control and observation operators. To be more precise the Lur'e resolving equations determine a Lyapunov functional candidate for some closed-loop feedback systems on the base of some properties of an uncontrolled (open-loop) system. Our results are illustrated in details by an example of a temperature of a rod stabilization automatic control system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.