Abstract
The X-ray crystal structure of the pure-spermine form of the left-handed Z-DNA duplex [d(CGCGCG)]2 has been determined at a temperature of -110 degrees C. Whereas the previously described room temperature structure of the pure-spermine form showed only the presence of a single "interhelix" spermine molecule, mediating contacts between neighboring duplexes (Egli et al., 1991), a second "intrahelix" spermine molecule as well as two hydrated sodium ions were found in the structure determined at low temperature. This second spermine molecule binds primarily within the minor groove of two hexamer duplexes that are stacked in an end-to-end fashion in the crystal lattice. Thus, the intrahelix spermine molecule interacts with a single infinite helix. The spine of hydration observed in other structures of Z-DNA hexamers is partially replaced and partially displaced by the intrahelix spermine molecule. In Z-DNA, phosphate groups are relatively closely spaced across the minor groove compared to the right-handed double-helical conformation of B-DNA. The intrahelix spermine molecule decreases cross-groove electrostatic repulsion within the Z-DNA helix, thereby increasing its relative stability. This structure may therefore provide an explanation for the role of spermine as a very effective inducer of the conformational B-DNA to Z-DNA transition with alternating dG-dC sequences in solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.