Abstract

We have previously reported that low-density lipoprotein (LDL) enhances and prolongs steroidogenesis in human choriogonadotropin (CG)-stimulated Leydig tumor cells (MA-10). The studies described herein elucidate the mechanisms by which LDL increases human CG stimulated steroidogenesis. Our results show that the MA-10 cells express the classic LDL pathway. LDL is bound to specific surface binding sites which are regulated by the level of intracellular cholesterol. The cellular processing of bound LDL is temperature-dependent and is inhibited by blocking lysosomal function. By using an LDL derivative in which the core cholesteryl esters have been replaced with [3H]cholesteryl linoleate, we show that LDL cholesterol is rapidly utilized for steroid hormone synthesis. The utilization of LDL cholesterol quantitatively accounts for the LDL-induced augmentation of steroidogenesis. We also show that the addition of LDL to human CG-stimulated MA-10 cells maintains cellular free and esterified cholesterol levels and increases progesterone biosynthesis. The addition of LDL does not, however, affect the cellular utilization of preexisting cholesterol stores for steroidogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.