Abstract
High-temperature low-cycle fatigue experiments were performed at different strain rates on nickel-based superalloy MAR-M247. Furthermore, slow-fast, fast-slow and dwell-fatigue tests were conducted. The deformation, damage and lifetime behaviour as a function of strain rate and cycle shape were observed. Results show that the lifetime decreases with decreasing strain rate, indicating the negative influence of time-dependent creep and oxidation mechanisms. The lifetimes of slow-fast and dwell-fatigue tests are lower than those for fast-slow tests, although the mean stress is compressive in slow-fast and dwell-fatigue tests and tensile in fast-slow tests. Slow-fast and dwell-fatigue tests lead to grain boundary cavitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.