Abstract

A generalization of the Lorentz reciprocal theorem is developed for the creeping flow of micropolar fluids in which the continuum equations involve both the velocity and the internal spin vector fields. In this case, the stress tensor is generally not symmetric and conservation laws for both linear and angular momentum are needed in order to describe the dynamics of the fluid continuum. This necessitates the introduction of constitutive equations for the antisymmetric part of the stress tensor and the so-called couple-stress in the medium as well. The reciprocal theorem, derived herein in the limit of negligible inertia and without external body forces and couples, provides a general integral relationship between the velocity, spin, stress and couple-stress fields of two otherwise unrelated micropolar flow fields occurring in the same fluid domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.