Abstract
The environmental influence of seasonal freezing and thawing forces the longitudinal shear effect of the bridge abutment, and the differential settlement between the subgrade and the bridge abutment will significantly affect traffic safety. In this work, based on the finite element simulation analysis method, the longitudinal push-out effect and differential settlement of the transition section caused by cycles are systematically investigated, and the treatment results under different control measures (buffer layer thickness) are compared and analyzed. The results show that changing the thickness of the buffer material in the transition section has no significant influence on the overall temperature field of the subsurface. The longitudinal displacement of the transition region will be obvious under the condition of seasonal cycle, and its longitudinal thrust effect on the abutment shows a typical periodic law with the seasonal change. As the depth of the lower soil layer from the surface increases, the pushing effect becomes weaker and weaker. The development of the different subsoil settlements in the transition section also showed periodic changes with the passage of seasons. The differential settlement of the transition section after the buffer layer treatment can be effectively controlled, and the maximum value of the surface settlement of the roadbed after the 5 cm thick buffer material is reduced by 35%, compared with the two deformations of frostshocked bridges, where differential settlement after the buffer material treatment creates only tip deformation. After using a 15 cm thick buffer layer material treatment, the maximum settlement value of the surface settlement of the road base is reduced from 0.2 m to 0.01 m, which will not affect safety and driving comfort. The research conclusions can provide a reference for the design of road and bridge transition sections in frozen areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.