Abstract

cAMP signals are received and transmitted by multiple isoforms of cAMP-dependent protein kinases (PKAs), typically determined by their specific regulatory subunits. We describe changes in the cAMP signal transduction pathway during cell cycle progression in synchronized rat thyroid cells. Both PKA type II (PKAII) localization and nuclear cAMP signaling are significantly modified during G(0) and G(1)-S transitions. G(1) is characterized by PKA activation and amplified cAMP signal transduction. This is associated with a decrease in the concentration of RI and RII regulatory subunits and enhanced anchoring of PKAII to the Golgi-centrosome region. Just prior to S, the cAMP pathway is depressed. Up-regulation of the pathway by exogenous cAMP in G(1) inhibited the subsequent decay of the Cdk inhibitor p27 and delayed the onset of S phase. Forced translocation of endogenous PKAII to the cytosol down-regulated cAMP signaling, advancing the timing of p27 decay and inducing premature exit from G(1). These data indicate that membrane-bound PKA amplifies the transduction of cAMP signals in G(1) and that the length of G(1) is influenced by cAMP-PKA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.