Abstract

Morphological studies of pollen tubes have shown that the configuration of structural cellular elements differs between the growing apex and the distal part of the cell. This polarized cellular organization reflects the highly anisotropic growth behavior of this tip growing cell. Accordingly, it has frequently been postulated that physical properties of pollen tubes such as cell wall plasticity should show anisotropic distribution, but no experimental evidence for this has been published hitherto. Using micro-indentation techniques, we quantify pollen tube resistance to lateral deformation forces and analyze its visco-elasticity as a function of distance from the growing apex. Our studies reveal that cellular stiffness is significantly higher at the distal portion of the cell. This part of the cell is also completely elastic, whereas the apex shows a visco-elastic component upon deformation. To relate these data to the architecture of the particular pollen tube investigated in this study, Papaver rhoeas, we analyzed the distribution of cell wall components such as pectin, callose, and cellulose as well as the actin cytoskeleton in this cell using fluorescence label. Our data revealed that, in particular, the degree of pectin methyl esterification and the configuration of the actin cytoskeleton correlate well with the distribution of the physical properties on the longitudinal axis of the cell. This suggests a role for these cellular components in the determination of the cytomechanics of pollen tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.