Abstract

In this paper, we consider the sparse linear complementarity problem, denoted by k-LCP: the coefficient matrices are restricted to have at most k nonzero entries per row. It is known that the 1-LCP is solvable in linear time, and the 3-LCP is strongly NP-hard. We show that the 2-LCP is strongly NP-hard, and it can be solved in polynomial time if it is sign-balanced, i.e., each row of the matrix has at most one positive and one negative entry. Our second result matches the currently best-known complexity bound for the corresponding sparse linear feasibility problem. In addition, we show that an integer variant of the sign-balanced 2-LCP is weakly NP-hard and pseudo-polynomially solvable, and the generalized 1-LCP is strongly NP-hard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.