Abstract

Over the past 20 years, zero-valent iron (ZVI) has been extensively applied for the remediation/treatment of groundwater and wastewater contaminated with various organic and inorganic pollutants. Based on the intrinsic properties of ZVI and the reactions that occur in the process of contaminants sequestration by ZVI, this review summarizes the limitations of ZVI technology and the countermeasures developed in the past two decades (1994–2014). The major limitations of ZVI include low reactivity due to its intrinsic passive layer, narrow working pH, reactivity loss with time due to the precipitation of metal hydroxides and metal carbonates, low selectivity for the target contaminant especially under oxic conditions, limited efficacy for treatment of some refractory contaminants and passivity of ZVI arising from certain contaminants. The countermeasures can be divided into seven categories: pretreatment of pristine ZVI to remove passive layer, fabrication of nano-sized ZVI to increase the surface area, synthesis of ZVI-based bimetals taking advantage of the catalytic ability of the noble metal, employing physical methods to enhance the performance of ZVI, coupling ZVI with other adsorptive materials and chemically enhanced ZVI technology, as well as methods to recover the reactivity of aged ZVI. The key to improving the rate of contaminants removal by ZVI and broadening the applicable pH range is to enhance ZVI corrosion and to enhance the mass transfer of the reactants including oxygen and H+ to the ZVI surface. The characteristics of the ideal technology are proposed and the future research needs for ZVI technology are suggested accordingly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.