Abstract

We study the algebraic properties of binary relations whose underlying digraph is smooth, that is, has no source or sink. Such objects have been studied as surjective hyper-operations (shops) on the corresponding vertex set, and as binary relations that are defined everywhere and whose inverse is also defined everywhere. In the latter formulation, they have been called multipermutations. We study the lattice structure of sets (monoids) of multipermutations over an [Formula: see text]-element domain. Through a Galois connection, these monoids form the algebraic counterparts to sets of relations closed under definability in positive first-order logic without equality. We show one side of this Galois connection, and give a simple dichotomy theorem for the evaluation problem of positive first-order logic without equality on the class of structures whose preserving multipermutations form a monoid closed under inverse. These problems turn out either to be in [Formula: see text] or to be [Formula: see text]-complete. We go on to study the monoid of all multipermutations on an [Formula: see text]-element domain, under usual composition of relations. We characterize its Green relations, regular elements and show that it does not admit a generating set that is polynomial on [Formula: see text].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.