Abstract
To explore how the commercially available large language model (LLM) GPT-4 compares to endocrinologists when addressing medical questions when there is uncertainty regarding the best answer. This study compared responses from GPT-4 to responses from 31 endocrinologists using hypothetical clinical vignettes focused on diabetes, specifically examining the prescription of metformin versus alternative treatments. The primary outcome was the choice between metformin and other treatments. With a simple prompt, GPT-4 chose metformin in 12% (95% CI 7.9-17%) of responses, compared with 31% (95% CI 23-39%) of endocrinologist responses. After modifying the prompt to encourage metformin use, the selection of metformin by GPT-4 increased to 25% (95% CI 22-28%). GPT-4 rarely selected metformin in patients with impaired kidney function, or a history of gastrointestinal distress (2.9% of responses, 95% CI 1.4-5.5%). In contrast, endocrinologists often prescribed metformin even in patients with a history of gastrointestinal distress (21% of responses, 95% CI 12-36%). GPT-4 responses showed low variability on repeated runs except at intermediate levels of kidney function. In clinical scenarios with no single right answer, GPT-4's responses were reasonable, but differed from endocrinologists' responses in clinically important ways. Value judgments are needed to determine when these differences should be addressed by adjusting the model. We recommend against reliance on LLM output until it is shown to align not just with clinical guidelines but also with patient and clinician preferences, or it demonstrates improvement in clinical outcomes over standard of care.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.