Abstract
The dynamics of a buoyant plume rising above a horizontal line heat source in a transverse, horizontal magnetic field is investigated. Similarity is shown to occur when the magnetic field strength varies as the −2/5 power of vertical distance from the source. The plume depends on two parameters — the Prandtl number (Pr) and the Lykoudis number (Z L). Families of exact closed form solutions are derived for Pr=5/9 and Pr≥2. A family of numerical integrations for Pr=0.01 (typical of liquid metals) is also reported. The magnetic field is shown to affect the profiles of velocity and temperature by altering the similarity functions, the coefficients, and the value of the independent similarity variable corresponding to a fixed physical position. An approximate closed form solution valid for low Pr and high Z L is presented. Possible experimental tests of the theory are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.