Abstract

We present an asymmetric step–barrier potential for which the one-dimensional stationary Schrödinger equation is exactly solved in terms of the confluent hypergeometric functions. The potential is given in terms of the Lambert W-function, which is an implicitly elementary function also known as the product logarithm. We present the general solution of the problem and consider the quantum reflection at transmission of a particle above this potential barrier. Compared with the abrupt-step and hyperbolic tangent potentials, which are reproduced by the Lambert potential in certain parameter and/or variable variation regions, the reflection coefficient is smaller because of the lesser steepness of the potential on the particle incidence side. Presenting the derivation of the Lambert potential we show that this is a four-parametric sub-potential of a more general five-parametric one also solvable in terms of the confluent hypergeometric functions. The latter potential, however, is a conditionally integrable one. Finally, we show that there exists one more potential the solution for which is written in terms of the derivative of a bi-confluent Heun function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.