Abstract

A single molecule offers to tailor and control the probing capability of a scanning tunneling microscope when placed on the tip. With the help of first-principles calculations, we show that on-tip spin sensitivity is possible through the Kondo ground state of a spin S = 1/2 cobaltocene molecule. When attached to the tip apex, we observe a reproducible Kondo resonance, which splits apart upon tuning the exchange coupling of cobaltocene to an iron atom on the surface. The spin-split Kondo resonance provides quantitative information on the exchange field and on the spin polarization of the iron atom. We also demonstrate that molecular vibrations cause the emergence of Kondo side peaks, which, unlike the Kondo resonance, are sensitive to cobaltocene adsorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.