Abstract

We investigate redshift distributions of three long burst samples, with the first sample containing 131 long bursts with observed redshifts, the second including 220 long bursts with pseudo-redshifts calculated by the variability-luminosity relation, and the third including 1194 long bursts with pseudo-redshifts calculated by the lag-luminosity relation, respectively. In the redshift range 0–1 the Kolmogorov–Smirnov probability of the observed redshift distribution and that of the variability-luminosity relation is large. In the redshift ranges 1–2, 2–3, 3–6.3 and 0–37, the Kolmogorov–Smirnov probabilities of the redshift distribution from lag-luminosity relation and the observed redshift distribution are also large. For the GRBs, which appear both in the two pseudo-redshift burst samples, the KS probability of the pseudo-redshift distribution from the lag-luminosity relation and the observed reshift distribution is 0.447, which is very large. Based on these results, some conclusions are drawn: i) the V-Liso relation might be more believable than the τ-Liso relation in low redshift ranges and the τ-Liso relation might be more real than the V-Liso relation in high redshift ranges; ii) if we do not consider the redshift ranges, the τ-Liso relation might be more physical and intrinsical than the V-L iso relation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.