Abstract
Sodium risedronate (Rise) is a third generation of bisphosphonates, compounds active in suppressing the bone resorption and therefore used in orthopedy, dentistry and bone cancer treatment. The stability of Rise as bioactive compound was studied by thermoanalysis (TA) and kinetic analysis under non-isothermal conditions, as well as by FTIR spectroscopy of samples treated at different temperatures. The data were compared with these obtained for similar compounds (sodium alendronate and zoledronic acid) and reveal a low stability: The decomposition begins under 100 °C, and the activation energy is relatively small. The possibilities of increasing the thermal stability were studied using binary mixture (1:1) in mass parts of Rise with talc, silica, mannitol, starch, microcrystalline cellulose and magnesium stearate. By both methods, TA and FTIR interaction between Rise and mannitol was detected. Regarding the kinetic analysis, the nonparametric kinetic methods reveal its advantages by an objective and complete kinetic description of Rise thermal decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.