Abstract

The cerebellar model articulation controller (CMAC) neural network is an associative memory that is biologically inspired by the cerebellum, which is found in the brains of animals. In recent works, the kernel recursive least squares CMAC (KRLS---CMAC) was proposed as a superior alternative to the standard CMAC as it converges faster and does not require tuning of a learning rate parameter. One improvement to the standard CMAC that has been discussed in the literature is eligibility, and vector eligibility. With vector eligibility the CMAC is able to control online motion control problems that it could not previously, stabilize the system much faster, and converge to a more intelligent solution. This paper integrates vector eligibility with the KRLS---CMAC and shows how the combination is advantageous through two simulated control experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.