Abstract

Abstract The mean global distributions of pressure, temperature, wind, moisture, cloudiness, precipitation, evaporation, and surface heat balance simulated for January by the two-level Mintz-Arakawa atmospheric general circulation model are compared with the corresponding observed fields. Although there are a number of shortcomings, in general the large-scale distribution of global climate is reasonably well portrayed by the model, in spite of its limited vertical resolution. The model simulates the semi-permanent cyclones and anticyclones of both the tropics and higher latitudes in approximately their correct positions, together with the associated large-scale temperature and circulation fields of the middle and lower troposphere. In comparison with models of greater resolution, these results suggest that with further selective improvements in the physical parameterizations, relatively coarse global models (of correspondingly lower computational demands) are useful tools in the study of many aspects of c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.