Abstract

We study the low-temperature phase of the three-dimensional $\pm J$ Ising spin glass in Migdal-Kadanoff approximation. At zero temperature, T=0, the properties of the spin glass result from the ground-state degeneracy and can be elucidated using scaling arguments based on entropy. The approach to the asymptotic scaling regime is very slow, and the correct exponents are only visible beyond system sizes around 64. At T>0, a crossover from the zero-temperature behaviour to the behaviour expected from the droplet picture occurs at length scales proportional to $T^{-d_s/2}$ where $d_s$ is the fractal dimension of a domain wall. Canonical droplet behaviour is not visible at any temperature for systems whose linear dimension is smaller than 16 lattice spacings, because the data are either affected by the zero-temperature behaviour or the critical point behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.