Abstract
In the frame of the new grant signed in November 2011 between Fusion for Energy (F4E) and the ECHUL-CA consortium, the development process of the Electron Cyclotron Heating and Current Drive (EC H&CD) Upper Launcher (UL) in ITER has moved a step towards the final design phase. The Blanket Shield Module (BSM) is a plasma facing component located at the tip of the launcher. The structure consists of a first wall panel (FWP) and a shell both with embedded cooling channels. A flange on the rear part allows the BSM to be connected by bolts to the main frame of the UL. Being a plasma facing component, the BSM is subjected to severe heat loads due to both thermal and nuclear irradiation. The current baseline value of surface heat load during normal plasma operation is 0.5 MW/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , while the volumetric nuclear heating is responsible for a total generation of about 160 kW. The temperature gradients resulting from the abovementioned heat loads have been assessed by FEM analyses. The temperature distributions are then transferred to a structural model for calculation of the induced thermal stresses. The surface heat load is applied to the FWP as a constant flux. The nuclear loads, instead, were assessed by MCNP calculations and are provided by means of a mesh tally with a grid step of 1 cm. The results have shown that the temperature reaches 260 °C at the FWP and at the flange of the BSM. As a consequence of large temperature gradients, high stresses (in the order of 200 MPa) are also induced at the inner cooling channels of the BSM's structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.