Abstract

We study the discontinuities (shocks) of the solution to the Burgers equation in the limit of vanishing viscosity (the inviscid limit) when the initial value is the opposite of the standard Poisson process p. We show that this solution is only defined for t e (0, 1). Let T 0 = 0 and T n , n≧1, be the successive jumps of p. We prove that for all M > 0 the inviscid limit is characterized on the region x e (-∞, M], t e (0, 1) by the increasing process $$N(t) = \sup \{ n \in \mathbb{N} {\text{| }}M + nt > T_n \} $$ and the random set I(x) = {n e {0,..., N(t)}‖T n -nt≦x<T n+1 - nt}. The positions of shocks are given in a precise manner. We give the distribution of N(t) and also the distribution of its first jump. We also prove similar results when the initial value is u μ(y, 0) = -μp(y/μ2) + μ-1 max(y, 0), μ e (0, 1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.