Abstract

A new type of designed hyperbranched ethylenediamine trazine polymer (HBETP) is successfully synthesized and characterized based upon NMR and GPC. The prepared HBETP is used to modify the poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/poly(butylene adipate-co-terephthalate) (PBAT) blends. The effect of HBETP on the microstructure, mechanical properties and thermal properties of the blends is studied. The results indicate that upon addition of 1.0 wt% of HBETP, the impact strength of the PHBV/PBAT blends is increased by 47.1%; ∆Tg of the blends decreases from 53.2 to 49.9 °C. These results, together with the morphology analysis of the fractured surface of the blends, conclude the formation of the transition layer between PHBV and PBAT. Also, the XRD result shows that the addition of HBETP can limit the growth of the PHBV crystals and causes the decrease of both the crystallinity and the grain crystalline size. The DSC result demonstrates that the addition of HBETP mainly affects the crystallization of the HB-HV binary eutectic region within PHBV. The mechanism of PHBV/PBAT toughening is due to the formation of the strong physical hydrogen bonding and the chemical micro-crosslinking between HBETP and PHBV/PBAT, which is proposed based on XPS characterization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.