Abstract
In this paper we review recent evidence on the molecular control of cell migration in the isocortex, and present an hypothesis for the evolutionary origin of the inside-out neurogenetic gradient of this structure. We suggest that there are at least two key factors involved in the acquisition of the inside-out gradient: (i) the expression of the protein reelin, which arrests the migration of cortical plate cells by detaching them from the radial glial fiber. This permits younger neurons to use the same fiber to migrate past the previous neurons; and (ii) the second factor is an intracellular signaling pathway dependent on a cyclin-dependent protein kinase (Cdk5). Cdk5 may work by inhibiting N-cadherin mediated cell aggregation as young cells cross the cortical plate, permitting them to move to the more superficial layers. Interestingly, the mutation in Cdk5 affects the migration of only those cells belonging to superficial layers, which are considered to be an evolutionary acquisition of the mammalian isocortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.