Abstract

Given two polynomial sets $\{ P_n(x) \}_{n\geq 0},$ and $\{ Q_n(x) \}_{n\geq 0}$ such that $\deg ( P_n(x) ) = \deg ( Q_n(x) )=n.$ The so-called connection problem between them asks to find coefficients $\alpha_{n,k}$ in the expression $\displaystyle Q_n(x) =\sum_{k=0}^{n} \alpha_{n,k} P_k(x).$ The connection problem for different types of polynomials has a long history, and it is still of interest. The connection coefficients play an important role in many problems in pure and applied mathematics, especially in combinatorics, mathematical physics and quantum chemical applications. For the particular case $Q_n(x)=x^n$ the connection problem is called the inversion problem associated to $\{P_n(x)\}_{n\geq 0}.$ The particular case $Q_n(x)=P'_{n+1}(x)$ is called the derivative connecting problem for polynomial family $\{ P_n(x) \}_{n\geq 0}.$ In this paper, we give a closed-form expression of the inversion and the derivative coefficients for hypergeometric polynomials of the form $${}_2 F_1 \left[ \left. \begin{array}{c} -n, a \\ b \end{array} \right | z \right], {}_2 F_1 \left[ \left. \begin{array}{c} -n, n+a \\ b \end{array} \right | z \right], {}_2 F_1 \left[ \left. \begin{array}{c} -n, a \\ \pm n +b \end{array} \right | z \right],$$ where $\displaystyle {}_2 F_1 \left[ \left. \begin{array}{c} a, b \\ c \end{array} \right | z \right] =\sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{(c)_k} \frac{z^k}{k!},$ is the Gauss hypergeometric function and $(x)_n$ denotes the Pochhammer symbol defined by $$\displaystyle (x)_n=\begin{cases}1, n=0, \\x(x+1)(x+2)\cdots (x+n-1) , n>0.\end{cases}$$ All polynomials are considered over the field of real numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.