Abstract

AbstractThe introduction of magnetism into a solid material might significantly modulate its electronic transport behavior, thereby serving as a means to tune the thermoelectric properties that have attracted considerable research attention in recent years. In this review, an introduction to recent studies on the interplay of magnetism and the thermoelectric Seebeck and Nernst effects is given. Concerning the Seebeck effect, the influence of superparamagnetic nanoparticles on the electronic and phonon transport of conventional nonmagnetic thermoelectric materials, as well as the spin‐related thermoelectric transport phenomenon in magnetic materials, are discussed. Then, the Nernst effect‐related transverse thermoelectric transport properties in nonmagnetic and magnetic topological materials are summarized, followed by a short introduction to the Nernst devices. Last, a further outlook on this new research direction is offered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.