Abstract
The kinetics of hydrogen exchange of pike a-parvalbumin was investigated using the method of infrared spectroscopy (sensitive to the amide hydrogen atoms in the peptide) and radioisotope method (sensitive to all labile hydrogen atoms). Ultraslow exchangeable hydrogen atoms were found to be substantially less in the first case than in the second one. Taking into account that the internal cavities in the parvalbumin are formed by hydrophobic amino acid residues, devoid of labile hydrogen atoms, it is possible to make the most appropriate assumption, namely, these cavities contain water molecules, hydrogen atoms of which are ultraslow exchangeable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.