Abstract

The fluorescence decay mechanism of 1, N 6-ethenoadenosine diphosphoribose bound to rabbit muscle glyceraldehyde 3-phosphate dehydrogenase markedly differs from that of the intact coenzyme analog (εNAD +) bound to the same enzyme. In the latter case the fluorescence is partially quenched by interactions between the ethenoadenine ring and amino acid residues in its binding site. Binding of the nicotinamide moiety of the coenzyme thus affects the relative orientation of the adenine ring within its binding site leading to the quenching interactions. The interactions of the adenine group with its binding site induce conformational changes in the enzyme which affect the binding of additional coenzyme molecules. The nicotinamide base thus determines, indirectly, the negative cooperativity found in NAD + binding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.