Abstract

AbstractComplex glacier motion in the Grove Mountains region, Antarctica, is measured using four-pass differential synthetic aperture radar (SAR) interferometry (InSAR). The components of the motion vector field are resolved using a 44 day-separation Japanese Earth Resources Satellite-1 (JERS-1) InSAR pair and a European Remote-sensing Satellite-1/-2 (ERS-1/-2) tandem InSAR pair. The 44 day temporal baseline provides the sensitivity required to observe the range of ice motion (around 8–10ma–1), and the 1 day short baseline provides the best choice for glacier digital elevation model reconstruction. It is remarkable that the scattering field of the JERS-1 pair remained coherent over the long time interval and the interferometric fringes are clear. The overall ice flow is from east to west, downslope and towards Lambert Glacier. The regional flow is obstructed by nunataks extending north–south, with two wide gaps. Two narrow glaciers flow past the nunataks and rejoin each other at the downstream end. Regional morphology, and the resolved flow in the Grove Mountains area, suggests that ice flow is channeled throughout this eastern flank of Lambert Glacier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.