Abstract

This paper describes an end-to-end Integrated Vehicle Health Management (IVHM) development process with a strong emphasis on the verification and validation of simulation models constructed during its implementation. The simulations are both physical and functional representations of the complex system being considered. The paper proposes guidelines in developing the appropriate functional model, followed by a novel technique in which the qualitative information captured in the functional representation is verified and validated against the quantitative information offered by the physical model of the same system. Further, both physical and functional models are verified by comparison with rig data. This verification and validation process enables the development of an automated Functional FMECA (Failure Modes Effects and Criticality Analysis) by systematically capturing all the effects of the considered failure modes on the rest of the system components. The concepts engaged in this process are demonstrated on a laboratory UAV fuel delivery system test rig, but they have the ability to be further applied to both new and legacy hi-tech high-value systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.