Abstract

The construction of an integrable generalization of the antiferromagnetic XXZ Heisenberg model with arbitrary spin and easy plane anisotropy is reconsidered. The fusion procedure which has been used to generate models with spin S > 1 2 is shown to give hermitian operators corresponding to the physical conserved quantities only in certain (allowed) regions of the anisotropy γ. The forbidden regions coincide with those where Kirillov and Reshetikhin find restrictions on string locations in a formal Bethe ansatz analysis. In each of the allowed regions for the anisotropy there exists a unique ground-state configuration that does not change with γ. The critical behaviour of the S = 1 and S = 2 spin chains is investigated by numerical solution of their associated Bethe ansatz equations. Our results agree with the known decomposition of the spin model into the semidirect product of a free bosonic (gaussian) and a parafermionic ( Z N ) theory with N = 2 S in the region of small anisotropy ( γ < π/2 S). They suggest that a similar decomposition holds in certain regions with γ > π/2 S. Here, however, N is given by the integer part of π/γ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.