Abstract

Human monoamine oxidase A that had been synthesized in a reticulocyte lysate translation system was capable of binding to and inserting into either rat liver mitochondria or isolated mitochondrial outer membranes. The inserted form was as resistant to proteinase K as endogenous mitochondrial monoamine oxidase A. The insertion, but not the binding, of monoamine oxidase A was prevented by depleting the reaction mixture of either ATP (with apyrase) or ubiquitin (with purified antibodies against this polypeptide). Addition of ATP or ubiquitin, respectively, to these depleted mixtures restored the insertion of the enzyme. In the absence of mitochondria, in vitro synthesized monoamine oxidase A did not catalyze its own alkylation by the mechanism-based inhibitor, [3H]clorgyline. However, both monoamine oxidase A that had been membrane-inserted in vitro and monoamine oxidase A that had been bound to the mitochondria under conditions of ATP depletion catalyzed adduct formation. Furthermore, reaction of either clorgyline or another mechanism-based inhibitor, pargyline, with the membrane-bound enzyme during ATP depletion inhibited the insertion of monoamine oxidase A when ATP was restored. These observations indicate that monoamine oxidase A acquired a catalytically active conformation on interaction with the mitochondrial outer membranes prior to its ATP and ubiquitin-dependent insertion into the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.