Abstract

Organic selenium compounds are widely associated with numerous pharmacological properties. However, selenium compounds, such as Ebselen (Ebs) and Diphenyl Diselenide (DPDS), could interact with mitochondrial respiratory complexes, especially with thiol groups. The present study evaluated whether the insertion of functional groups, o-methoxy, and p-methyl on organic selenium compounds promotes changes in mitochondrial functioning parameters and whether this is related to antibacterial activity. Here we tested some in vitro parameters after the exposure of mitochondria to different concentrations of β-selenoamines 1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and analogs of DPDS 1,2-bis(2-methoxyphenyl)diselenide (C3) and 1,2-bisp-tolyldiselenide (C4). We also evaluated the antibacterial activity of β-selenoamines and diselenides against Methicillin-resistant Staphylococcus aureus and Escherichia coli. Our results showed that o-methoxy insertion increased the antioxidant properties, without affecting the mitochondrial membrane potential. The compounds with a p-methyl insertion affected the mitochondrial membrane potential and significantly decreased the State III respiration and RCR. Besides, the p-methyl compounds presented antibacterial activity at lower concentrations than those shown in o-methoxy, precisely by the same mechanism that promotes damage to thiol groups and better absorption in gram-positive bacteria due to their relationship with cell wall constituents. Finally, our study confirms that structural modifications in organic selenium compounds provide changes in mitochondrial functioning but also raise their antibacterial effect. This strategy can be used as a target for the development of new enough potent antibacterial to restrict the advance of resistant bacterial infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.