7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.bbagrm.2017.10.004
Copy DOIJournal: BBA - Gene Regulatory Mechanisms | Publication Date: Nov 3, 2017 |
Citations: 6 |
microRNAs (miRNAs) are first transcribed as long, primary transcripts, which are then processed by multiple enzymes and proteins to generate the single-stranded, approximately 22-nucleotide (nt)-long mature miRNAs. A critical step in animal miRNA biogenesis is the cleavage of primary miRNA transcripts (pri-miRNAs) to produce precursor miRNAs (pre-miRNAs) by the enzyme Drosha. How Drosha recognizes its substrates remains incompletely understood. In this study we constructed a series of human Drosha mutants and examined their enzymatic activities and interaction with RNAs. We found that the N-terminal region is required for the nuclear localization and cellular function of Drosha. And in contrast to previous reports, we showed that the double-stranded RNA binding domain (RBD) of Drosha exhibited a weak but noticeable affinity for RNA. Compared to the RBDs of other RNA-binding proteins, the RBD of Drosha has a short insert, whose mutations reduced RNA binding and pri-miRNA cleavage. Overexpression of Drosha RBD mutants in a reporter assay corroborated their deficiencies in Drosha activity in cell cultures. In addition, we found that point mutations in the RNaseIIIb domain of Drosha implicated in Wilms tumors differentially affected cleavage of the 5′ and 3′ strands of pri-miRNAs in vitro. In conclusion, our results provided important insights into the mechanism of pri-miRNA processing by human Drosha.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.