Abstract

The initiation and growth mechanisms of filamentous carbon over iron foils were studied at 900 K and 1 bar pressure. Various gas mixtures of CO, CO 2, CH 4, H 2, and H 2O were used to fix the solid phase compositions based on nonequilibrium phase diagrams. Solid phase compositions were verified using X-ray and electron diffraction. Gravimetric analysis indicated that in dry gas mixtures the initial rate of fractional weight gain was a direct function of the P CO P H 2 product; for water containing experiments it was related to the P H 2 O P H 2P CO ratio. X-Ray diffraction analysis of the solid suggested that the maximum rate of fractional weight gain coincided with complete carbiding of the “surface” layers. Examination of the foils in an electron microscope indicated the surface breaks up into a nodular morphology, and these nodules are comprised of filamentous carbon. An initiation mechanism is proposed which assumes that Fe 3C acts to increase over all surface area through surface breakup and also acts as a catalyst for carbon deposition and subsequent filament growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.