Abstract
We prove local well-posedness for the initial-boundary value problem (IBVP) associated to the Schrödinger–Korteweg–de Vries system on right and left half-lines. The results are obtained in the low regularity setting by using two analytic families of boundary forcing operators, one of these families being developed by Holmer to study the IBVP associated to the Korteweg–de Vries equation [The initial-boundary value problem for the Korteweg–de Vries equation, Comm. Partial Differential Equations 31 (2006) 1151–1190] and the other one was recently introduced by Cavalcante [The initial-boundary value problem for some quadratic nonlinear Schrödinger equations on the half-line, Differential Integral Equations 30(7–8) (2017) 521–554] in the context of nonlinear Schrödinger with quadratic nonlinearities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.