Abstract
The spin-galvanic effect generated by homogeneous optical excitation with infrared circularly polarized radiation in quantum wells (QWs) is reviewed. The spin-galvanic current flow is driven by an asymmetric distribution of spin-polarized carriers in k -space of systems with lifted spin degeneracy due to k -linear terms in the Hamiltonian. Spin photocurrents provide methods to investigate the spin-splitting of the band structure and to make conclusion on the in-plane symmetry of QWs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.